
Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Interfacing Apache HTTP Server 2.4 with
External Applications

Jeff Trawick

November 6, 2012

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Who am I?

Met Unix (in the form of Xenix) in 1985

Joined IBM in 1990 to work on network software for
mainframes

Moved to a different organization in 2000 to work on
Apache httpd

Later spent about 4 years at Sun/Oracle

Got tired of being tired of being an employee of too-huge
corporation so formed my own too-small company

Currently working part-time, coding on other projects, and
taking classes

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Overview

Huge problem space, so simplify

Perspective: “General purpose” web servers, not minimal
application containers which implement HTTP

“Applications:” Code that runs dynamically on the server
during request processing to process input and generate
output

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Possible web server interactions

Native code plugin modules (uhh, assuming server is
native code)

Non-native code + language interpreter inside server (Lua,
Perl, etc.)

Arbitrary processes on the other side of a standard wire
protocol like HTTP (proxy), CGI, FastCGI, etc. (Java and
“all of the above”) or private protocol

Some hybrid such as mod fcgid

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

mod fcgid as example hybrid

Supports applications which implement a standard wire
protocol, no restriction on implementation mechanism

Has extensive support for managing the
application[+interpreter] processes so that the
management of the application processes is well-integrated
with the web server

Contrast with mod proxy fcgi (pure FastCGI, no process
management) or mod php (no processes/threads other than
those of web server).

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Application space requirements

native code plugin module — understand at least some of
the internal request processing phases, take control of
certain phases

external processes — implement a protocol to
communicate with the web server

libraries already exist for standard protocols (HTTP, CGI,
FastCGI, etc.), although in some cases the protocol is
trivial to implement with no help

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

APIs

may mirror web server API (like mod perl)

may be more generic like the servlet API

non-API: just run and generate output
<?php

echo "Hello, world!";

?>

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Native module drawbacks

Overall resource use often larger when app runs in the web
server, especially for prefork model

memory
connections to database, LDAP, etc.

Resources are often left behind on any thread/process that
occasionally runs the application — underutilized.

Introduces instability into server

Collisions between requirements of different modules

Generally unable to support multiple script interpreter
versions

Potential lack of thread safety, or expensive locking

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

But by running applications in their own processes

Often the required application thread/process count is a
fraction of that of the web server (so resources not left
behind on threads/processes occasionally used).

A particular application usually can’t introduce instability
into the server, so basic services and other applications are
unaffected.

Different applications can use different libraries, interpreter
versions, framework versions, etc.

Independent start/stop of web server and application

Independent identity or chroot env vs. web server and
other applications

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Where are we now with app containers?

larger numbers of popular server implementations (market
fragmentation)

anywhere from using script interpreter CLI to invoke mini
HTTP engine, IDE-controlled servers for development,
traditional ”web servers” like httpd & nginx (mod foo?
CGI? FastCGI?) to cloud deployment on Heroku, App
Engine, etc. with hidden implementation

lots of implementations/protocols/APIs

to choose from as an app developer
to need to support as a hopeful framework provider

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Solution: separate the interface from the
implementation

application space
both the quick-and-dirty-script writer as well as the
framework provider write to a sanitized API instead of to
different transport or web server APIs

(or to a collection of different APIs on the part of the
framework provider)

run-time provider

(service provider, server provider, third-party glue provider)
makes the sanitized API work on their run-time
environment, and doesn’t need to get the different types of
developers to target their run-time

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

But look at CGI.pm as an obvious (and old)
example:

CGI

FastCGI

mod perl

even a couple of ways to map CGI.pm to PSGI

That’s plenty portable among possible run-time environments.

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Limiting the scope of examples in this presentation

simple application

use the sanitized APIs for four popular scripting languages:
Perl, PHP, Python, and Ruby

forget about HTTP proxy to other run-time environments
or anything Java

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

command-line script versions — Perl

#!/usr/bin/env perl

use DBI;

use Cache::Memcached;

my $key = ’Monday’;

my $mckey = ’demowebapp.’ . $key;

my $mc = new Cache::Memcached({’servers’ => [’192.168.11.199:11211’]});

my $val = $mc->get($mckey);

if (!$val) {

my $dbh = DBI->connect(’DBI:Pg:dbname=demowebapp;host=192.168.11.199’);

my $sth = $dbh->prepare("SELECT * FROM demowebapp_x WHERE id = ’$key’;");

$sth->execute();

($key, $val) = $sth->fetchrow_array();

$sth->finish();

$dbh->disconnect();

$mc->set($mckey, $val, 1);

}

print "$val\n";

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

command-line script versions — PHP

#!/usr/bin/env php

<?php

$key = ’Monday’;

$mckey = ’demowebapp.’ . $key;

$mc = new Memcache;

$mc->connect(’192.168.11.199’, 11211);

$val = $mc->get($mckey);

if (!$val) {

$pgconn = pg_connect("host=192.168.11.199 dbname=demowebapp");

$res = pg_query($pgconn, "SELECT * from demowebapp_x WHERE id = ’$key’;");

$row = pg_fetch_row($res);

$val = $row[1];

pg_free_result($res);

pg_close($pgconn);

$mc->set($mckey, $val, 0, 1);

}

print "$val\n";

?>

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

command-line script versions — Python

#!/usr/bin/env python

import psycopg2

import memcache

key = ’Monday’

mckey = ’demowebapp.’ + key

mc = memcache.Client([’192.168.11.199:11211’])

val = mc.get(mckey)

if not val:

pg = psycopg2.connect(database=’demowebapp’, host=’192.168.11.199’)

csr = pg.cursor()

csr.execute("SELECT * FROM demowebapp_x WHERE id = ’%s’;" % key)

val = csr.fetchone()[1]

csr.close()

pg.close()

mc.set(mckey, val, time=1)

print val

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

command-line script versions — Ruby

#!/usr/bin/env ruby

require ’memcached’

require ’pg’

key = ’Monday’

mckey = ’demowebapp.’ + key

mc = Memcached.new(’192.168.11.199:11211’)

begin

val = mc.get mckey, false

rescue

val = nil

end

if not val

pgconn = PGconn.open(:dbname => ’demowebapp’, :host => ’192.168.11.199’)

res = pgconn.exec("SELECT * from demowebapp_x WHERE id = ’#{key}’;")

val = res[0][’content’]

res.clear

pgconn.finish

mc.set mckey, val, 1, false

end

print "#{val}\n"

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Web APIs

PSGI for Perl

Rack for Ruby

WSGI for Python

PHP? same old same old

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Commonalities between PSGI, Rack, and WSGI

The basic API description is the same.

Input:

CGI-like variables, input handle for request body if
necessary, handle for error messages, information about the
run-time environment

Output:

A structure with the HTTP response code, response
headers, and either the response body or some readable
object

PSGI and Rack based on WSGI but most of this is the
essence of the problem anyway

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PSGI — Perl Web Server Gateway Interface

Interface between applications (or frameworks) and
run-time environment

A PSGI app is a Perl subroutine which adheres to this
minimal spec

Plack is a set of adapters to web servers (”PSGI Toolkit”)

CGI, SCGI, FastCGI, mod perl, more
Plack::Handler::Apache2, Plack::Handler::FCGI,
Plack::Handler::CGI, etc.

Other providers besides Plack

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

WSGI — Web Server Gateway Interface

Web Server Gateway Interface for Python

Supported by lots of frameworks

FastCGI, CGI, SCGI, mod wsgi, more

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Rack

Rack interface for Ruby

Supported by lots of frameworks

Rackup, Phusion Passenger

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP

embedded in HTML or not, the model is the same
(though some capabilities differ by run-time environment)

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Webapp versions in Perl, PHP, Python, and Ruby

These are also at http://emptyhammock.blogspot.com/
2012/11/app-app-app-app.html.

http://emptyhammock.blogspot.com/2012/11/app-app-app-app.html
http://emptyhammock.blogspot.com/2012/11/app-app-app-app.html

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Webapp version — Perl

use strict;

use DBI;

use Cache::Memcached;

sub get_key {

my $pi = shift;

my @terms = split(/\//, $pi || "Monday");

return $terms[-1];

}

my $app = sub {

my $env = shift;

my $key = get_key($env->{’PATH_INFO’});

my $mckey = ’demowebapp.’ . $key;

my $mc = new Cache::Memcached({’servers’ => [’192.168.11.199:11211’]});

my $val = $mc->get($mckey);

if (!$val) {

my $dbh = DBI->connect(’DBI:Pg:dbname=demowebapp;host=192.168.11.199’);

my $sth = $dbh->prepare("SELECT * FROM demowebapp_x WHERE id = ’$key’;");

$sth->execute();

($key, $val) = $sth->fetchrow_array();

$sth->finish();

$dbh->disconnect();

$mc->set($mckey, $val, 1);

}

return [’200’, [’Content-Type’ => ’text/html’], [$val]];

};

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Webapp version — PHP

<?php

function get_key($pi) {

$terms = strlen($pi) != 0 ? $pi : ’Monday’;

$key = end(explode(’/’, $terms));

return $key;

}

$key = get_key($_SERVER[’PATH_INFO’]);

$mckey = ’demowebapp.’ . $key;

$mc = new Memcache;

$mc->connect(’192.168.11.199’, 11211);

$val = $mc->get($mckey);

if (!$val) {

$pgconn = pg_connect("host=192.168.11.199 dbname=demowebapp");

$res = pg_query($pgconn, "SELECT * from demowebapp_x WHERE id = ’$key’;");

$row = pg_fetch_row($res);

$val = $row[1];

pg_free_result($res);

pg_close($pgconn);

$mc->set($mckey, $val, 0, 1);

}

print "$val\n";

?>

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Webapp version — Python

import psycopg2

import memcache

def get_key(pi):

terms = [token for token in pi.split(’/’) if token != ’’]

if terms:

return terms[-1]

return ’Monday’

def application(environ, start_response):

start_response(’200 OK’, [(’Content-type’, ’text/html’)])

key = get_key(environ[’PATH_INFO’])

mckey = ’demowebapp.’ + key

mc = memcache.Client([’192.168.11.199:11211’])

val = mc.get(mckey)

if not val:

pg = psycopg2.connect(database=’demowebapp’, host=’192.168.11.199’)

csr = pg.cursor()

csr.execute("SELECT * FROM demowebapp_x WHERE id = ’%s’;" % key)

val = csr.fetchone()[1]

csr.close()

pg.close()

mc.set(mckey, val, time=1)

return [val]

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Webapp version — Ruby

class Lookup

def get_key(pi)

terms = pi != nil ? pi : ’Monday’

terms.split(’/’)[-1]

end

def call env

key = get_key(env[’PATH_INFO’])

mckey = ’demowebapp.’ + key

mc = Memcached.new(’192.168.11.199:11211’)

begin

val = mc.get mckey, false

rescue

val = nil

end

if not val

pgconn = PGconn.open(:dbname => ’demowebapp’, :host => ’192.168.11.199’)

res = pgconn.exec("SELECT * from demowebapp_x WHERE id = ’#{key}’;")

val = res[0][’content’]

res.clear

pgconn.finish

mc.set mckey, val, 1, false

end

[200, {’Content-Type’ => ’text/html’}, [val]]

end

end

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Generally, how to run with httpd

script interpreter inside httpd, running on the request
thread

external process, new process for every request (CGI)

pool of external process, ability to manage the pool
(FastCGI and others), some form of IPC between request
thread (handler) and external process

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Simple deployment

Each of these languages and APIs have a simple run-time
environment for use during development which allows you to
start a minimal HTTP server from the command-line.

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PSGI

Easiest container for dev is HTTP::Server::PSGI
$ plackup -e ’sub { [200, ["Content-Type" => "text/plain"], ["Hello, world!"]] }’

HTTP::Server::PSGI: Accepting connections at http://0:5000/

(from
http://en.wikipedia.org/wiki/Plack_(software))

has automatic reload capability

similar, but via FastCGI
$ plackup -s FCGI --listen /tmp/fcgi.sock -e ’sub { [200, ["Content-Type" => "text/plain"], ["Hello, world!"]] }’

FastCGI: manager (pid 8315): initialized

FastCGI: manager (pid 8315): server (pid 8316) started

FastCGI: server (pid 8316): initialized

http://en.wikipedia.org/wiki/Plack_(software)

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP

$ ~/php54inst/bin/php -S 127.0.0.1:9999 -c $HOME/php54inst/etc

PHP 5.4.8 Development Server started at Tue Nov 6 08:12:53 2012

Listening on http://127.0.0.1:9999

Document root is /home/trawick/myhg/apache/documents/AC2012EU

Press Ctrl-C to quit.

[Tue Nov 6 08:20:43 2012] 127.0.0.1:42825 [200]: /lookup.php

...

(new with PHP 5.4)

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

WSGI

$ uwsgi --plugins http,python --http :9090 --wsgi-file ./lookup.wsgi

/usr/lib/uwsgi/plugins/python27_plugin.so

*** Starting uWSGI 0.9.8.1-debian (64bit) on [Tue Nov 6 09:00:45 2012] ***

compiled with version: 4.6.1 on 28 June 2011 10:48:13

*** WARNING: you are running uWSGI without its master process manager ***

your memory page size is 4096 bytes

spawned uWSGI http 1 (pid: 4530)

HTTP router/proxy bound on :9090

...

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Rack

config.ru:
require ’memcached’

require ’pg’

require ’./lookup’

run Lookup.new

command-line:
$ rackup config.ru

[2012-11-06 08:57:04] INFO WEBrick 1.3.1

[2012-11-06 08:57:04] INFO ruby 1.9.2 (2011-07-09) [x86_64-linux]

[2012-11-06 08:57:04] INFO WEBrick::HTTPServer#start: pid=4435 port=9292

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Proxy to command-line development environment?

mod proxy could be used to route requests to these mini
servers, but generally they are intended only for development
(with the exception of uwsgi).

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PSGI with httpd 2.4

mod cgi[d], mod fcgid, mod proxy fcgi

mod perl

Umm, mod perl for 2.4 is a work in progress; mod perl
exports the gory details of the module API, and that work
isn’t finished.
A step by step guide for mod perl with httpd 2.4 is
available, and PSGI shouldn’t be impacted by the lingering
issues, but YMMV.

mod psgi

Looks nice and small, appears to have limited use, referred
to as experimental in some references...
Needs a patch to work with Perl <5.14
Nonetheless, the module builds fine with 2.4 (ignoring the
Perl 5.14 dependency, which I didn’t have).

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

WSGI with httpd 2.4

mod cgi[d], mod fcgid, mod proxy fcgi

mod wsgi

(Err, Phusion Passenger has support for WSGI too, but
mod wsgi is the one.)

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Rack with httpd 2.4

mod cgi[d], mod fcgid, mod proxy fcgi

Phusion Passenger (supports httpd 2.4 as of Phusion
Passenger 3.0.2)

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP with httpd 2.4

mod cgi[d], mod fcgid, mod proxy fcgi

mod php

New with 5.4:
http://wiki.apache.org/httpd/PHP-FPM

http://wiki.apache.org/httpd/PHP-FPM

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

WHAT ABOUT SCGI?

http://python.ca/scgi/protocol.txt

http://en.wikipedia.org/wiki/Simple_Common_

Gateway_Interface

PHP doesn’t support it
(https://bugs.php.net/bug.php?id=36943), but
PSGI, Rack, and WSGI apps can be accessed via SCGI
with the proper container.

Ignore for brevity.

Something else ignored intentionally: mod fastcgi

http://python.ca/scgi/protocol.txt
http://en.wikipedia.org/wiki/Simple_Common_Gateway_Interface
http://en.wikipedia.org/wiki/Simple_Common_Gateway_Interface
https://bugs.php.net/bug.php?id=36943

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP via mod fcgid

PHP FastCGI processes normally exit after 500 requests

Synchronize mod fcgid and PHP limits to avoid 500 error.

In PHP wrapper:
PHP_FCGI_MAX_REQUESTS=10000

In fcgid configuration:
FcgidMaxRequestsPerProcess 10000

or just set PHP FCGI MAX REQUESTS to 0 to disable

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP — Special considerations with mod fcgid

PHP FastCGI process management ineffective (wasted)
with mod fcgid, which routes only single concurrent
requests to the socket of a process which it has spawned.

Leave PHP child process management disabled
(PHP FCGI CHILDREN=0).

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP — Special considerations with mod fcgid

But:

With PHP process management, single cache can be used
concurrently by many processes.

Without PHP child process management, PHP opcode
caches are not very effective. Cache is serially reused
within single process when the same fcgid-spawned process
handles another request.

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP — Perhaps unexpected issues when running
as FastCGI

PHP flags in .htaccess files — no longer respected when
you move from mod php to FastCGI

on Windows, mod php strips the drive letter from
SCRIPT NAME; mod fcgid doesn’t

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP — Configuration

.conf:

LoadModule fcgid_module modules/mod_fcgid.so

FcgidMaxRequestsPerProcess 5000

Uncomment the following line if cgi.fix_pathinfo is set to 1 in

php.ini:

FcgidFixPathinfo 1

Alias /php/ /home/trawick/myhg/apache/documents/AC2012EU/php/

<Directory /home/trawick/myhg/apache/documents/AC2012EU/php/>

Options +ExecCGI

AddHandler fcgid-script .php

FcgidWrapper /home/trawick/myhg/apache/documents/AC2012EU/php-wrapper.sh .php

2.4-specific

Require all granted

</Directory>

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP — Configuration (cont.)

wrapper script:

#!/bin/sh

export PHPRC=/home/trawick/myhg/apache/documents/AC2012EU/

export PHP_FCGI_MAX_REQUESTS=5000

export PHP_FCGI_CHILDREN=8

exec /usr/bin/php-cgi

and be sure to make this script executable

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

WSGI via mod wsgi (internal)

LoadModule wsgi_module modules/mod_wsgi.so

WSGIScriptAlias /wsgi/ /home/trawick/myhg/apache/documents/AC2012EU/

<Directory /home/trawick/myhg/apache/documents/AC2012EU/>

2.4-specific

Require all granted

</Directory>

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

WSGI via mod wsgi (external)

LoadModule wsgi_module modules/mod_wsgi.so

WSGIDaemonProcess test processes=2 threads=25

WSGIScriptAlias /wsgi/ /home/trawick/myhg/apache/documents/AC2012EU/

<Directory /home/trawick/myhg/apache/documents/AC2012EU/>

2.4-specific

Require all granted

</Directory>

WSGIDaemonProcess has a host of options, including

run as a different user/group when starting httpd as root

configure I/O timeouts and buffer sizes

set display name for ps

http://code.google.com/p/modwsgi/wiki/

ConfigurationDirectives#WSGIDaemonProcess

http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIDaemonProcess
http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives#WSGIDaemonProcess

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PSGI via mod proxy fcgi

Starting the FastCGI processes:

$ plackup -s FCGI --listen 127.0.0.1:10081 --daemonize --nproc 10 ./lookup.psgi

.conf:

LoadModule proxy_module modules/mod_proxy.so

LoadModule proxy_fcgi_module modules/mod_proxy_fcgi.so

ProxyPass /psgi/ fcgi://127.0.0.1:10081/

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Rack via Phusion Passenger

.conf:

Note: The installer picks a Ruby, possibly not the one

you want.

LoadModule passenger_module /var/lib/gems/1.8/gems/passenger-3.0.18/ext/apache2/mod_passenger.so

PassengerRoot /var/lib/gems/1.8/gems/passenger-3.0.18

PassengerRuby /usr/bin/ruby1.8

Listen 8081

<VirtualHost *:8081>

DocumentRoot /home/trawick/inst/24-64/htdocs/rackapps/lookup/public

<Directory /home/trawick/inst/24-64/htdocs/rackapps/lookup/public>

Require all granted

Options -MultiViews

</Directory>

</VirtualHost>

Other: In the lookup directory (referenced above), create
public and tmp directories and store config.ru and
lookup.rb under lookup. config.ru is unchanged from
rackup command-line deployment.

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Compared with httpd 2.2

Just about everything in this space that works with 2.4
will work with 2.2.

A couple of special issues to keep in mind:

mod perl is still bleeding edge on 2.4 because of the way it
exposes a rich set of httpd APIs and is affected by most
any change anywhere, which isn’t the general scenario.
mod proxy fcgi is not part of 2.2, though there is a
third-party module by that name available for 2.2.

Summary: None of the unbundled solutions are bleeding
edge on 2.2, but mod perl is with 2.4.

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Compared with nginx 1.2.latest

Generalities:

nginx doesn’t do any process management

no CGI support at all
application processes not part of web server lifecycle

Any potential mechanism for running scripts inside nginx
will impose big limitations (don’t block).

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

FastCGI differences with nginx

No process management, so nothing like mod fcgid
(standard recommendation is to use spawn-fcgi from
Lighttpd, though containers that provide a mapping of a
standard API to FastCGI usually provide the same
capability)
FastCGI capability similar to mod proxy fcgi, but also
supports Unix sockets (a patch surfaced recently to add
Unix socket support to mod proxy fcgi)
nginx (apparently) doesn’t support load balancing to
FastCGI (unlike mod proxy fcgi) but some FastCGI apps
like PHP can spawn multiple children on the same socket
in order to handle load balancing.
mod fcgid provides process managment, but has the
reverse limitation: mod fcgid will route requests only to
processes it has spawned, and only one concurrent request
per process.

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Rack and nginx

Phusion Passenger also supports nginx

FastCGI, ...

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

WSGI and nginx

experimental mod wsgi-for-nginx

ability to forward to uWSGI which supports WSGI and
other protocols

FastCGI, ...

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP as FastCGI with nginx

nginx doesn’t handle process management, so use
something else (php-cgi -b BINDADDR will work).

Any wrapper script is of no interest to nginx, but it still is
a good place to set up PHP with the desired settings.

#!/bin/sh

export PHP_FCGI_CHILDREN=20

export PHP_FCGI_MAX_REQUESTS=5000

/usr/bin/php-cgi -b 127.0.0.1:10080

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PHP as FastCGI with nginx (cont.)

location ~ \.php$ {

fastcgi_params is part of standard configuration

include fastcgi_params;

fastcgi_pass 127.0.0.1:10080;

}

(Both php-cgi and fastcgi pass support Unix sockets.)

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

PSGI

http://en.wikipedia.org/wiki/PSGI/

http://search.cpan.org/~miyagawa/PSGI-1.101/

PSGI.pod

http://www.catalyzed.org/2009/11/

mtplack-on-nginx-love.html

https://github.com/spiritloose/mod_psgi/

http://www.simon-cozens.org/content/

i-finally-get-psgi-and-plack

http://www.reddit.com/r/perl/comments/h6qqr/

the_psgi_is_the_limit/

http://plackperl.org

http://search.cpan.org/~miyagawa/Plack-1.0009/

lib/Plack/Handler/CGI.pm

http://en.wikipedia.org/wiki/Plack_(software)

http://search.cpan.org/~miyagawa/PSGI-1.101/

PSGI.pod http://www.gossamer-threads.com/lists/

modperl/dev/104672

http://en.wikipedia.org/wiki/PSGI/
http://search.cpan.org/~miyagawa/PSGI-1.101/PSGI.pod
http://search.cpan.org/~miyagawa/PSGI-1.101/PSGI.pod
http://www.catalyzed.org/2009/11/mtplack-on-nginx-love.html
http://www.catalyzed.org/2009/11/mtplack-on-nginx-love.html
https://github.com/spiritloose/mod_psgi/
http://www.simon-cozens.org/content/i-finally-get-psgi-and-plack
http://www.simon-cozens.org/content/i-finally-get-psgi-and-plack
http://www.reddit.com/r/perl/comments/h6qqr/the_psgi_is_the_limit/
http://www.reddit.com/r/perl/comments/h6qqr/the_psgi_is_the_limit/
http://plackperl.org
http://search.cpan.org/~miyagawa/Plack-1.0009/lib/Plack/Handler/CGI.pm
http://search.cpan.org/~miyagawa/Plack-1.0009/lib/Plack/Handler/CGI.pm
http://en.wikipedia.org/wiki/Plack_(software)
http://search.cpan.org/~miyagawa/PSGI-1.101/PSGI.pod
http://search.cpan.org/~miyagawa/PSGI-1.101/PSGI.pod
http://www.gossamer-threads.com/lists/modperl/dev/104672
http://www.gossamer-threads.com/lists/modperl/dev/104672

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

WSGI

http://www.python.org/dev/peps/pep-3333/

http://stackoverflow.com/questions/2532477/

mod-cgi-mod-fastcgi-mod-scgi-mod-wsgi-mod-python-flup-i-dont-know-how-m

http://stackoverflow.com/questions/219110/

how-python-web-frameworks-wsgi-and-cgi-fit-together

http://code.google.com/p/modwsgi/wiki/

ConfigurationDirectives

http://www.python.org/dev/peps/pep-3333/
http://stackoverflow.com/questions/2532477/mod-cgi-mod-fastcgi-mod-scgi-mod-wsgi-mod-python-flup-i-dont-know-how-m
http://stackoverflow.com/questions/2532477/mod-cgi-mod-fastcgi-mod-scgi-mod-wsgi-mod-python-flup-i-dont-know-how-m
http://stackoverflow.com/questions/219110/how-python-web-frameworks-wsgi-and-cgi-fit-together
http://stackoverflow.com/questions/219110/how-python-web-frameworks-wsgi-and-cgi-fit-together
http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives
http://code.google.com/p/modwsgi/wiki/ConfigurationDirectives

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

Rack

http://en.wikipedia.org/wiki/Rack_(web_server_

interface)

http://m.onkey.org/ruby-on-rack-1-hello-rack

http://en.wikipedia.org/wiki/Rack_(web_server_interface)
http://en.wikipedia.org/wiki/Rack_(web_server_interface)
http://m.onkey.org/ruby-on-rack-1-hello-rack

Interfacing
Apache HTTP

Server 2.4
with External
Applications

Jeff Trawick

FastCGI

http://people.apache.org/~trawick/

AC2010-FastCGI.pdf

http://httpd.apache.org/mod_fcgid/mod/mod_

fcgid.html

http://people.apache.org/~trawick/AC2010-FastCGI.pdf
http://people.apache.org/~trawick/AC2010-FastCGI.pdf
http://httpd.apache.org/mod_fcgid/mod/mod_fcgid.html
http://httpd.apache.org/mod_fcgid/mod/mod_fcgid.html

